חAmIBIA UחIVERSITY
 OF SCIEПCE AПD TECHחOLOGY

FACULTY OF ENGINEERING

InSTEM

QUALIFICATION: INTRODUCTION TO SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS	
QUALIFICATION CODE: O4STEM	LEVEL: 4
COURSE CODE: IPH4O1S	COURSE NAME: INTRODUCTION TO PHYSICS A
SESSION: \quad NOVEMBER 2019	PAPER: \quad N/A
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Ms Ilana Malan Ms Oksana Kachepa
MODERATOR:	Mr Anthony Apata

INSTRUCTIONS

1. Answer all questions.
2. Write all the answers in ink.
3. No books, notes, correction fluid (Tippex) or cell phones allowed.
4. Pocket calculators are allowed.
5. You are not allowed to borrow or lend any equipment or stationary.
6. All FINALANSWERS must be rounded off to THREE DECIMAL PLACES.
7. All CONSTANT VALUES and FORMULAS on page 8.

SECTION A

This section consists of nine (9) questions. Choose the correct answer and clearly indicate your answer.

Question 1

A student walks 8 km due south and then 12 km due west. What is the resultant displacement?
(a) $14.422 \mathrm{~km} @ 56^{\circ}$
(b) $\quad 14.422 \mathrm{~km} @ 326^{\circ}$
(c) $\quad 11.314 \mathrm{~km} @ 146^{\circ}$
(d) $\quad 11.314 \mathrm{~km} @ 326^{\circ}$

Question 2

A mass is launched at 30° to the horizontal with initial speed $25.0 \mathrm{~m} / \mathrm{s}$. What is the maximum height reached?
(a) 6.251 m
(b) $\quad 12.508 \mathrm{~m}$
(c) $\quad 7.964 \mathrm{~m}$
(d) $\quad 5.674 \mathrm{~m}$

Question 3

A cannon of mass 900 kg fires a 20 kg shell at a velocity of $180 \mathrm{~m} \mathrm{~s}^{-1}$. What is the recoil velocity of the cannon?
(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$

Question 4

A bullet of mass 30 g and travelling at a speed of $200 \mathrm{~m} \mathrm{~s}^{-1}$ embeds itself in a wooden block. The bullet penetrates a distance of 10 cm into the wood. What is the average resistive force acting on the bullet?
(a) 2000 N
(b) $\quad 4000 \mathrm{~N}$
(c) 2500 N
(d) 6000 N

Question 5

A locomotive with a mass of 6 t and a tractive resistance of $0.5 \mathrm{~N} / \mathrm{kg}$ travels at a constant speed of $36 \mathrm{~km} / \mathrm{h}$ on a straight horizontal track. Determine the work done in 10 minutes.
(a) $\quad 176.580 \mathrm{MJ}$
(b) $\quad 153.441 \mathrm{MJ}$
(c) $\quad 839.562 \mathrm{MJ}$
(d) $\quad 993.473 \mathrm{MJ}$

Question 6

In an attempt to increase the volume of a cylinder, the gas is heated for 3 minutes at a rate of 25 kW and an efficiency of 80%. At a certain temperature the gas pushes an adjustable piston 30 mm outwards. If the radius of the piston is 8 cm and pressure is 3 atm , determine the change in the internal energy of the gas.
(a) 3600183.353 J
(b) 4893064.483 J
(c) $\quad 9337402.721 \mathrm{~J}$
(d) $\quad 3700750.738 \mathrm{~J}$

Question 7

A sample of gas contains 3.0×10^{24} atoms. What volume is occupied by the gas at a temperature of $27^{\circ} \mathrm{C}$ and pressure of 120 kPa ?
(a) $\quad 1.512 \mathrm{~m}^{3}$
(b) $\quad 2.436 \mathrm{~m}^{3}$
(c) $\quad 1.831 \mathrm{~m}^{3}$
(d) $\quad 0.104 \mathrm{~m}^{3}$

When a certain gas is doubled in initial volume and pressure decreases by a third, what will the final temperature be in relation to the initial temperature?
(a) $\quad T_{2}=\frac{4}{3} T_{1}$
(b) $\quad T_{2}=\frac{2}{3} T_{1}$
(c) $\quad T_{2}=\frac{1}{3} T_{1}$
(d) $\quad T_{2}=\frac{3}{2} T_{1}$

Question 9

A 500 W kettle contains 500 g of water at $20^{\circ} \mathrm{C}$. What time is needed to raise the temperature of the water to boiling point?
(a) $4 \min 23 \mathrm{~s}$
(b) 5 min 2 s
(c) 5 min 36 s
(d) 3 min 4 s

SECTION B - TOTAL MARKS 70

This section consists of six (6) questions. Answer ALL the questions.

Question 10

10.1 Determine the magnitude and direction of the equilibrant force of the following three forces:
70 N @ 40
15 N @ 270°
85 N @ 120°
10.2 A non-uniform wooden bar of mass 220 g and length 1.6 m is pivoted at the centre. Three loads of masses $15 \mathrm{~g}, 30 \mathrm{~g}$ and 65 g are placed on the bar and keep it in horizontal equilibrium. 15 g is placed 18 cm from the right end of the rod, 30 g load is 42 cm from the left end and 65 g is placed 31 cm from the right end.
10.2.1 Determine the position of the center of mass of the bar.
10.2.2 The pivot is moved 10 cm to its left. The position of the centre of mass and all three masses remain as in 10.2.1. The magnitude of the centre of mass, the 65 g and the 15 g masses remain as in 10.2 .1. How should the 30 g mass change to maintain horizontal equilibrium?
11.1 State three requirements for simple harmonic motion.
11.2 The graph of displacement x against time t for an object executing simple harmonic motion (s.h.m.) is shown in Figure 1.

Figure 1
11.2.1 State a time at which the object has maximum speed.
11.2.2 State a time at which the magnitude of the object's acceleration is a maximum.
11.3 Three graphs of displacement x against time $t(a)$, velocity v against time $t(b)$ and acceleration a against time $t(c)$ of an oscillating object are shown in Figure 2 below.

Figure 2

State the phase difference between:
11.3.1 displacement-time and velocity-time graphs
11.3.2 velocity-time and acceleration-time graphs
11.3.3 displacement-time and acceleration-time graphs

12.1 A ball is thrown at an angle of 35° to the horizontal and velocity of $4 \mathrm{~m} / \mathrm{s}$ from the top of the building of height 10 m . Using the time symmetry and velocity symmetry principles determine:

12.1.1 Maximum height reached by the ball from the ground.
12.1.2 Total time of flight.
12.1.3 The range of the ball.
12.2 A truck with a mass of $6 t$ drives down a slope of 1 in 8 at a constant speed of $10 \mathrm{~km} / \mathrm{h}$. The resistance to motion of the truck is $190 \mathrm{~N} / \mathrm{kN}$ of the weight of the truck.
12.2.1 Calculate the work done by the truck in a half hour.
12.2.2 Determine the power required if the truck was driving on a horizontal surface.
13.1 State the principle of conservation momentum.
13.2 A ball of mass 210 g moving at a speed of $23 \mathrm{~m} \mathrm{~s}^{-1}$ hits a wall at right angle and rebounds at a speed of $19 \mathrm{~m} / \mathrm{s}$. The ball is in contact with the wall for 0.31 s .
13.2.1 Calculate the change in momentum of the ball.
13.2.2 Calculate the magnitude of the average force acting on the ball.
13.2.3 Determine energy lost in collision.
14.1 Define the specific heat capacity of a substance.
14.2 A small object of mass $m=250 \mathrm{~g}$ and unknown specific heat capacity c, initially at $100^{\circ} \mathrm{C}$, is placed into a body of liquid with a heat capacity of $1300 \mathrm{~J} \mathrm{~K}^{-1}$, initially at $20^{\circ} \mathrm{C}$. The final equilibrium temperature is $27^{\circ} \mathrm{C}$. What is the value of c ? Ignore any heat that may be absorbed by the vessel containing the liquid.
14.3 154 g of crushed ice at $-20^{\circ} \mathrm{C}$ is removed from a freezer and placed in a calorimeter. Thermal energy is supplied to the ice at a constant rate of 530 W . To ensure that all the ice is at the same temperature, it is continually stirred. The temperature of the contents of the calorimeter is recorded every 15 seconds.
Figure 3 below shows the variation with time t of the temperature ϑ of the contents of the calorimeter.

Figure 3
14.3.1 Determine the specific heat capacity of ice.
14.3.2 Determine the specific latent heat of fusion of ice.

Question 15

15.1 List four assumptions of the kinetic model of ideal gases.
15.2 An ideal gas is kept in a cylinder by a piston that is free to move. The gas is heated such that its internal energy increases and the pressure remains constant. Use molecular model of ideal gases to explain the increase in internal energy.
15.3 A cylinder contains 50 L of argon gas at 18.4 atm and $127^{\circ} \mathrm{C}$. How many moles of argon gas is in the cylinder?
15.4 The volume of the cylinder is decreased by a half at a constant temperature, what is the new pressure of argon gas in atm and in Pa ?

Constants:

$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
1 atm $=101325 \mathrm{~Pa}$
$\mathrm{C}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$
one year $=365.25$ days
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-}$

Formulae:

average speed $=\frac{\text { distance }}{\text { time }}$
average velocity $=\frac{\mathrm{u}+\mathrm{v}}{2}$
$s=u t+\frac{1}{2} a t^{2}$
$\mathrm{F}=\mathrm{ma}$
work $=F s$
$E_{p}=m g h$
$\eta=\frac{\text { output }}{\text { input }} \times 100 \%$
power $=\mathrm{F} \times$ velocity
$\mathrm{F}=\frac{\Delta \text { momentum }}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}$
$\Delta U=\Delta Q+\Delta w o r k$
$\mathrm{E}=\mathrm{mL}$
$\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

10^{3}	kilo	K	10^{-2}	centi	c
10^{6}	Mega	M	10^{-3}	milli	m
10^{9}	Giga	G	10^{-6}	micro	H
10^{12}	Tera	T	10^{-9}	nano	n
10^{15}	Peta	P	10^{-12}	pico	p

average velocity $=\frac{\text { displacement }}{\text { time }}$
$a=\frac{v-u}{t}$
$v^{2}=u^{2}+2 a s$
moment $=F s$
pressure $=\frac{\mathrm{F}}{\mathrm{A}}$
$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$
power $=\frac{\text { work }}{t}$
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$
$\mathrm{f}=\frac{1}{\mathrm{~T}}$
$\mathrm{E}=\mathrm{mc} \Delta \mathrm{T}$
$\mathrm{pV}=\mathrm{nRT}$
work $=p A s=p \Delta V$

